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Once again assumption 2 (i.e., dCp/dJ < Q) guarantees that
dn/dV > 0. Therefore, if V decreases (at constant throttle), then
so must . If on the contrary the pilot dives (again leaving the
throttle alone), the engine speeds up. Equation (8), along with
knowledge of Cy(J) for values of J in the vicinity of the initial
cruise condition, allows one to proceed stepwise to determine
n(V).

One Last Question

But why, one might reasonably ask, is the derivative of the
power coefficient with respect to advance ratio always nega-
tive? In fact, if no restriction is placed on its domain of defi-
nition, it’s not true that that derivative is always negative; for
examples showing dC,/dJ > 0, see the classic paper of Hart-
man and Biermann.® But it is true that within the fairly well-
defined working range of advance ratio values, dC»/dJ is in-
deed negative. Why?

The blade element theory of propeller action provides a
hodgepodge of contributing conditions, but no direct and sim-
ple answer. Or at least this author hasn’t found one. Employing
the representative blade element analysis of von Mises,* how-
ever, a satisfactory solution is readily obtained. Von Mises ar-
gues that the power coefficient function is of the form

Cp = Nk sin B'(J, — J) (9)

where A = 7rx, p is a solidity factor, B’ is the blade setting
angle (of the representative element at relative station x) with
respect to the zero-lift direction, and J, is the value of advance
ratio at which C» goes negative. Since all of the numbers in
Eq. (9) are positive, dCp/dJ is negative.

Conclusions

Even in this advanced digital age, classical analytic reason-
ing can, on occasion, be parsimonious, instructive, and effec-
tive. But it seldom does the whole job.
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Lifting-Line Theory of an Arched
Wing in Asymmetric Flight
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Introduction

RANDTL’S lifting-line theory'? is, perhaps, the simplest
among aerodynamic theories of high-AR wings in incom-
pressible steady flows. At the essence of the theory, the wing
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is reduced to a line vortex of variable circulation located at its
quarter-chord line; the wake behind the wing is reduced to a
continua of noninteracting rectilinear trailing vortices, origi-
nating at the quarter-chord and extending to infinity. The equa-
tion governing the circulation of the quarter-chord vortex is
obtained from the requirement that its local lift should be equal
to that calculated from the effective angle of attack (AOA) of
the respective wing section.

A recently developed asymptotic theory of high-AR arched
wings® suggests that if the wing sweep is small enough,
Prandtl’s lifting-line theory can be extended so as to apply for
arched (nonplanar) wings. Toward this end, the wing should
be modeled by a planar arched vortex situated perpendicular
to the direction in which the wake extends, regardless of the
actual wing planform and its orientation relative to the flow.
The (infinite) velocity induced by such a vortex on itself
should be disregarded, both in constructing the equation gov-
erning the circulation of the wing vortex, and in computing
the lift and drag forces acting on the wing.

This Note elucidates the extension of the classical lifting line
theory for an arched wing of a typical gliding parachute.

Lifting-Line Formulation for an Arched Wing

Consider a parachute wing in a steady translatory motion
through an (otherwise quiescent) incompressible fluid. Let u
and p be the velocity of the wing and the density of the fluid,
respectively. Consistent with the present design trends, the
wing will be assumed to be unswept. It will be also assumed
that in the front view the wing can be approximated by an arc
of radius R and angle 2¢, (Fig. 1).

Let C be a right-handed Cartesian coordinate system, se-
lected in such a way that its x axis coincides with the direction
of the wing’s motion, and the z axis points downward, per-
pendicular to the line connecting the left and right tips of the
wing. Relative to C, the wing and its wake will be modeled
by a curved line vortex in the (yz) plane, and by a cylindrical
vortex sheet formed on the wing vortex and extending to in-
finity in the negative x direction. For the sake of being specific,
it will be assumed henceforth that the x axis of C passes
through the center of the wing’s arc.

Let I', ¢, a, «,, and «;, each defined on (— ¢, ¢), be the
sectional circulation, chord length, lift-slope coefficient, geo-
metrical AOA, and induced AOA, respectively; «, and o; are
shown in Fig. 1. By following the same arguments as those of
the classical lifting-line theory, the circulation of the model
wing is required to be such that its lift pul’ equals the lift
spucale, — a;) of the actual wing; namely, for each ¢ in

("d’o» d)o),
T(d) = zuc(da(P)la, () — alP)] (D

Noting that the circulation of the wake vortices is —[dI'(¢)/
d¢] do, one may use the Biot—Savart law to obtain®*

b
- dar@) -
o () = SRt %_% dt,‘b' cot 3 d¢ 2)
Thus, for each ¢ in (— ¢y, ¢y),
() 1o[Marg) s—¢
wc(@)a(d) | SuRu j(% ap Ty 4 =ald)
(3)

To obtain a unique solution for I', this equation should be
supplemented by the edge conditions

I'(=do) = T'(do) =0 €]

stating, on physical grounds, that no pressure differences may
exist at the wingtips.
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Fig. 1 Arched wing in asymmetric flight.

Equation (3) will be simplified using the substitution

t = tan(/2), t' = tan(¢'/2), to = tan(¢p/2)  (5)
Thus, with
— Y + ’ 1 — 2
cotd) ¢ =1 tt,, cos ¢ = 12
2 r—t 1 +¢
2 2d ©
. t t
Sln¢_1+t2’ d¢_1+t2

one finds that for each 1 in (—1,, #,),

PA0)) L] j(dltt)1+n @ eam 0

uc(a(t) 8aRu |, de/ r—1+¢
Here, as well as on all subsequent occurrences, a bar accent
indicates a composite function of the argument 2 arctan(-); for
example,

K = T2 arctan 1) ()

The integral on the right-hand side (RHS) of Eq. (7) can be
simplified further using the identity

L+ =1—2t—1t)+¢ 9)
and the variant

(~)=K) =0 (10)

of Eq. (4); it yields

YAy 1+ o o [© alry dr
— ———dt' = (1 + — 11
jL d’ r—1t ( )j{( e’ r—t (b

1 o

Thus, Eq. (3) eventually becomes: for each ¢ in (—f, ),

2y 1+ t-j[ dfitey dr’ A 12)

uc(tH)a(r) 87Ru de’ ¢t — ¢

o

Equation (12) is similar to the comparable equation from the
classical lifting-line theory of straight planar wings. It suggests
that an arched wing will typically produce smaller lift toward
the tips than a comparable planar wing (of span 4Rt;) having
the same chord ¢ and AOA &, [note the coefficient (1 + £%)
at the second term on the left-hand side of Eq. (12)]. Con-
versely, an arched wing with chord ¢ and AOA &, will have
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the same lift distribution as a planar wing (of span 4Rt,) with
chord (1 + )¢ and AOA &, /(1 + t?). Moreover, the lift
distribution of an arched pseudoelliptic wing with

(t:') _ [2)1/2

o0 = co to(l + 3

(13)

and a(f) = a, = const is governed by the same equation as that
of a twisted planar elliptic wing; the latter equation is known
to be solvable analytically.! The particular case of a pseudoel-
liptic wing is discussed in the remaining part of this Note.

Spanwise Lift Distribution of a Pseudoelliptic Wing
For a pseudoelliptic wing [see Eq. (13)], one may use the
substitution

t=—tycos O 14

to recast Eq. (12) into the form where for each & in (0, m),

21(~1, cos D) N 1 " dlt—t, cos &)
ucoyd, sin 8muRt, |, dd
do @ (—t, cos 9)

= S 15
cos ¥ —cos ¥ 1+ t]cos*d s

As in the classical lifting-line theory, a solution of this equation
can be sought in the form of the Fourier series

I{—1, cos ¥) = 4uRy, 2 A, sin nd (16)
n=1

where {A,, A,, ...} is a set of constant coefficients. With Eq.
(16), Eq. (15) becomes

d ¥, (—1 )
S 4, sin nd(1 + nH) = 2H sin o 2T 08 D)
Lt 1 + 5 cos*

an
where

H = coa,/(16R1) (18)
is a dimensionless constant. Multiplying both sides of Eq. (17),

in turn, by sin 4, sin 249, . .., and integrating between O and
« readily yields that for each m in {1, 2, ...},

4H T (— i i
_ f &, (—t, cos Psin mI sin I 49 (19)
o]

"7 w1 + mH) 1 + 12 cos?d

Let o and B be the angles of attack and sideslip, measured
at the midsection of the wing. Referring to Fig. 1 for a perti-
nent definition of B, one has that for each ¢ in (—dy, ¢y)

a (D) = ay(Pp) + acos ¢ — Bsin ¢ (20

where, by interpretation, «, is the local (geometric) AOA at
a=B=0.

In the case where « is constant on (= ¢, ¢y), i.€., the wing
is untwisted geometrically, the integral appearing on the RHS
of Eq. (19) can be computed analytically.” Thus, with

1= =1+ 267 (V1 + 12 — 1) = —tan’(¢/4)  (21)

one finds that for each m in {1, 2, ...},

Agp1 =

1+ (2m — DH

2H'(1 + 7
1-m

a + a2m — 1) El_i_Tl] (22)
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_ 2Htymt" '(1 + 7)°
T+ 2mEDN(A — 7

B (23)

Lift, Side-Force, Drag,
and Rolling-Moment Coefficients

In the present notation, the lift, side-force, and induced-drag
coefficients can be defined by

@0
C,.= 25 J I'(d)cos ¢ dd 24)
uS J_ "
2R [*
C.==| T(esin ¢ dd (25)
uS | &
2R d>(l
Cu= s C(d)a(¢) dop (26)

~¢n

respectively, where S is an arbitrary reference area. With Eqgs.
(2), (5), (14), and (16), these become

327R*?
Co= 5172 Z Aguei™"2m — 1) @7
2R (1 + 1)
C, = MAgT 28
’ S(1— 1 ; : 28)
AR ~
Co=—g" > mA (29)

m=1

Now, substitute Eqs. (18), (22), and (23) in Egs. (27-29). If
S is chosen as the total wing area, namely,

T = #Re, sin (ﬂ) (30)
T 2

by 1+
Ssz c(P) d¢)=7chot01 —

~ g

the resulting equations can be brought into the following re-
spective forms:

Qm — 1)7'2"'72

Comall + 9 2 1 o o

m=1

X |:o¢0 + a(Zm — 1) a+ T)] 3
(1 -1
_ (1 + 7 Cmy !
= o T 2, 1 + 2mH (32)
, =
Camantt TS o

1 T

m=1

y {(2m _ Ll = 9 + a@m ~ b1 +27)]
[1 + @m— DHPQ + 7

32
- (T%} (33)
Note that with A denoting the AR, namely
A = 4R? sin’¢/S (34)
one has that
+
=2 %—_%3 (35)

Since the wing is assumed to form a circular arc in the (yz)
plane, pressure forces acting on the wing yield zero rolling
moment about the center of the arc. For a different reference
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point, say, the one situated in the (xz) plane at the distance A
above the center of the wing’s arc, the rolling moment is,
simply,

C, =—Chl (36)

where [ is an arbitrary reference length. With / chosen as 2R
sin ¢, the span of the wing’s projection of the (xy) plane, Eq.
(36) yields

(1l — 7 < Cm)yr!

C =—
™ 1 + 2mH (D

m=1

Approximate Formulas
For a typical gliding parachute ¢, rarely exceeds 45 deg, in
which case T equals about —0.04, by Eq. (21). Accordingly,
to the very good accuracy, one can neglect all terms that are
of the second order (and higher) with respect to 7. This leads
to the following useful approximations:

aC, 1+ 27 »
e = [1 oG )] (38)
aC, 1 +4r 2
= - +
da 0 l:l +a tor )] (39
ac, 1 + 4r
— = + - 4
9 _ _ hrf1xar oo @
B~ MR |1+2m V7

H R 1,
Ca=— (1 — 47) <Cz——C;+ )
2T

[

1+ 27 , 1 .,
=—\{C; ——C}+ - 42)
A ’

In Eq. (42), the ellipses stand for terms of the order a7,
aj7?, and B°7°. Note that as far as only pressure forces are
concerned, the dihedral effect of an arched wing is destabiliz-
ing relative to any point in the (xz) plane located between the
wing and the center of its arc.

When A is sufficiently large and |7| is sufficiently small,
Egs. (39) and (42) can be shown to agree with the comparable
results of the asymptotic lifting-line theory developed in Ref.
3. Toward this end, it proves convenient to select the area of
the wing’s projection on the (xy) plane, namely,

J% 1+ 7
S =R c(p)cos pdp =5 ——
o a-m

= S[1 + 27 + O(7) (43)

as a reference area. The corresponding AR, lift, and drag co-
efficients become A’ = AS/S’, C, = C.S/S’, and C); = C,S/S’
by definition. Accordingly, from Eqgs. (39) and (42),

aC;
- = gof(1 +27) — 2(1 + 6DA' ™ + -] (44)
o
1+ 27 1
= CP——Ci+ - 45
Ca A ( © 5 G ) (45)

Subject to Eq. (21) the identity between these two equations
and Egs. (44) and (45) of Ref. 3 becomes readily apparent.
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Wind-Tunnel Tests of Flap Gap Seals
on a Two-Dimensional Wing Model
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Nomenclature

= airplane or wing lift coefficient

= section lift coefficient

- section lift coefficient with flaps deflected
= section lift coefficient with zero flaps
Reynolds number based on chord length
N = wing area

= area of wing segment containing flaps

@ = angle of attack

6f = flap deflection angle

1

o
1l

Rl
|

Introduction

COMMERCIALLY marketed drag reduction kit was in-

stalled and flight tested on a Piper Arrow II by the first
author of this Note in 1989.' Predominant among the devices
included were gap seals for both the wing flaps and ailerons,
but several fairings for flap hinges, fuel-tank-attach screws,
and exposed portions of retracted wheels were also included.
The primary purpose of the tests was to evaluate the effec-
tiveness of these devices in reducing drag. Since the effect of
each device was too slight to be measured individually, the
entire kit was installed and tested by measuring various per-
formance parameters. The results showed a slight reduction in
parasite drag coefficient of about 18 counts, or 7% below that
of the unmodified aircraft.

An unexpected result of these tests was a slight reduction in
maximum lift coefficient and corresponding increase in stall
speed, with the modifications installed. The change was slight,
but occurred in all cases tested. The increased stall speed was
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about 1 or 2 mph. A senior thesis project” verified these results
in a wind tunnel, although at very small Reynolds numbers
(Re = 1.43 X 10°-1.87 X 10%. This model was also three
dimensional.

Flap gap seals were also investigated as part of the Ad-
vanced Technology Light Twin-Engine airplane program.* Al-
though wind-tunnel tests indicated greater maximum lift with
the seals in place, flight tests of the full-scale aircraft revealed
the opposite. The flight tests were only performed with flaps
retracted; however, the sealed flaps reduced the maximum lift
coefficient by 0.19, or 5 mph higher stall speed, compared to
the unsealed condition.

Although no data have been published, Mooney Aircraft
Corporation tested gap seals on the Mooney TLS. Conversa-
tions with Mooney engineers indicated that a slight drag re-
duction was achieved, which accounted for about a 2-kn in-
crease in cruise speed. Careful adjustment and testing was
required to achieve this result, however, without altering the
stall speed.

Since very little information could be found on the effects
of gap seals, especially those on stall speed, it was decided to
pursue further investigation. A thorough aerodynamic study of
the effects of flap gap seals in a controlled environment of a
wind tunnel was deemed necessary. Also, since the few pre-
vious tests that were done were primarily on three-dimensional
wings, it was decided to approach this study from a two-di-
mensional aspect.

To compare the results with previous flight tests, the airfoil
of the Piper Arrow II was used, namely a NACA 65,-415. This
airfoil was also utilized in the study of Ref. 2.

Procedure

A model was constructed for testing in the Pennsylvania
State University low-speed wind tunnel, which has a test sec-
tion of approximately 3.5 X 5 ft. The chord was 11.813 in.,
which represents a 3/16 scale of the full-size Piper Arrow. A
16-in. span was chosen, with large endplates to simulate a two-
dimensional wing, which fitted into walls inserted within the
tunnel.

Lift and drag forces were measured by use of an Aerolab
six-component, pyramidal, strain gauge balance. Airspeed was
determined by a ceiling-mounted pitot—static tube in the for-
ward portion of the test section, which fed into a pressure
transducer, and the resulting pressure differential displayed as
voltage on a voltmeter. Both the balance and the pitot—static
system were calibrated prior to actual testing. Tare runs were
also made to determine the drag of the endplates and balance
struts,

Tests were run at a speed near the highest sustainable speed
of the tunnel (168 ft/s), which yielded a Re of 9 X 10°. To
gain some insight into Reynolds number effects, runs were also
made at Re = 6 X 10°, or a speed of 112 ft/s. Since these
Reynolds numbers were well below those of the full-scale air-
plane, a trip-strip was installed at the 30% chord position to
fix the transition point. This location was chosen as a result of
information in Ref. 4.

Runs were made at each of the four flap settings of the full-
scale airplane: 0, 10, 25, and 40 deg. Data were taken at 14
points from —4 to +16 deg angle of attack, in 2-deg incre-
ments from —4 to +10, and 1-deg increments from 10 to 16
deg (the stall region). All tests were run with and without gap
seals installed, and at both Re = 6 X 10° and 9 X 10°.

Flow visualization was performed by use of heavyweight
cotton thread tufts taped to the wing. Twelve spanwise rows
with seven tufts chordwise in each row were utilized, all
equally spaced. Photos were made of the tuft patterns at angles
of attack of 4 deg to full stall in 2-deg increments, and also 1
deg before stall. Oil flow studies were also conducted with a
brightly fluorescing motor oil thinned with kerosene, and il-
luminated with uv lights.



